Structural and Reactivity Patterns in π -Complexes of σ -Benzoquinone

D. Scott Bohle,*⁺ A. Nørlund Christensen,[‡] and Patricia A. Goodson[†]

Department of Chemistry, University of Wyoming, Laramie, Wyoming **82071-3838,** and Chemistry Department, Aarhus University, Langelandsgade **140,** DK-8000 Aarhus **C,** Denmark

Received May 18, I993

The recent isolation of π -complexes containing η^3 -semi-obenzoquinone,¹ η^4 -o-benzoquinone,² and η^6 -catecholate³ fragments augments the extensive π -coordination chemistry of η^4 p-benzoquinones.4 Although our structural understanding of π -bound metalloquinones is now well developed, information concerning the reactivity and electronic structures of π -bound *o*and p -quinones is limited.⁵ The recognition of metalloquinone π -interactions in the copper containing metalloquinoid proteins⁶ galactose oxidase⁷ and the amine oxidases,⁸ which contain tyrosyl-(4-thi0ether)~ and topaquinoneI0 residues, respectively, suggest that the metal-quinoid cofactor π -interaction may be rather common^{6a} and critical to enzymatic turnover.¹¹ When contrasted with the detailed understanding of the electronic structure of the η ³-O-chelate bound quinoids,^{5a,12} there is a conspicuous lack of experimental and theoretical data for the π -bound complexes. This paper concerns one end of the scale of possible metalloquinone π -interactions, that characterized by strong back-bonding to the quinone and relatively short metal-carbon bonds.

Depending upon the specific conditions employed, Scheme I, the oxidative addition of catechol to triruthenium dodecacarbonyl yields either $\{Ru_2(\eta^2,\mu_2,\eta'^2-O_2C_6H_4)(CO)_4\}$ ₂ (1), which precipitates in high yield as an air-stable pale yellow microcrystalline insoluble diamagnetic solid, or the dimeric edge opened complex (Ru3- $(\eta^2,\mu_2,\eta^2-O_2C_6H_4)(CO)_8\}$ **(2).** It is possible to convert 2 in high yield to **1** by treating it with additional catechol under the

t University of Wyoming.

- *t* Aarhus University.
- (1) (a) Fox, G. A.; Pierpont, C. G. *Inorg. Chem.* 1992.31.3718. (b) Fox,
- G. A.; Pierpont, C. G. J. *Chem. Soc., Chem. Commun.* 1988, 806. (2) Bohle, D. **S.;** Goodson, P. A. J. *Chem.* **Soc.,** *Chem. Commun.* 1992, 1205.
- (3) Westcott, **S.** A,; Taylor, N. J.; Marder, T. B.; Baker, R. T.; Jones, N. J.; Calabrese, J. C. *J. Chem.* **Soc.,** *Chem. Commun.* 1991, 304.
- (4) Schrauzer, G. N. *Ado. Orgonomet. Chem.* 1964, *2,* 1.
- **(5)** (a) Pierpoint, C. G.; Buchanan, R. M. *Coord. Chem. Reo.* 1981,38,45. (b) Kabachnik, M. I.; Bubnov, N. N.; Solodovikov, **S.** P.; Prokof'ev, A. I. *Russ. Chem. Reo. (Engl. Trans.)* 1984, *53,* 288.
- (6) For reviews of quinoidproteins **see:** (a) Duine, J. A. *Eur. J. Biochem.* 1991, *200,* 271. (b) Jonegejan, J. A.; Duine, J. A. Eds. *PQQ* and *Quinoproteins;* Kluwer: Hinghan, MA, 1989. (c) Thompson, A. J. *Noruri* 1991, **350,** 22.
- (7) Ito. **N.;** Phillips, **S.** E. **V.:** Stevens, C.; *Oael.* **Z.** B.; McPherson. M. J.: . Keen, J. N.; Yadav, D. **S.;** Knowles, P. **P.** Nature 1991, **350,** 87.
- (8) Dooley, D. M.; McGuirl, M. **A.;** Br0wn.D. E.;Turowski,P. N.; McIntire, W. **S.;** Knowles, P. F. *Nature* 1991, *349,* 262.
- (9) Derived from the covalent linkage of the cysteinyl sulfur in cys 228 to the four position of the phenyl ring in tyr 272.
- (10) Topaquinone = **3-(2,4,5-trihydroxyphenyl)alanine, see:** James, **S.** M.; Mu, D.; Wemmer, D.; Smith, A. J.; Kaur, **S.;** Maltby, D.; Burlingame, A. L.; Klinman, J. P. *Science* 1991, 248, 981.
- (11) (a) Nakamura, N.; Kohzuma, T.; Kuma, H.; Suzuki, S. J. Am. Chem.
Soc. 1992, 114, 6550. (b) Branchaud, B. P.; Montague-Smith, M. P.;
Kosman, D. J.; McLaren, F. R. J. Am. Chem. Soc. 1993, 115, 798.
(12) (a) Lever, A. B
- Masui, **H.;** Lever, A. B. P.; Auburn, P. **R.** *Inorg. Chem.* 1991,30,2402.
- (1 *3)* Crystal data for 1: TheX-ray powder pattern of [Ru?(O~C~H,)(CO)~]~ was recorded on a Nonius Guinier camera at 25 'C with SI *(a* = 5.43050 Å) as an internal standard and Cu K α_1 radiation ($\lambda = 1.540598$ Å). The position of the diffraction lines were measured on a photometer, and the powder pattern was indexed using the program FZON.¹⁴ with a triclinic cell $a = 6.584$ Å, $b = 8.809$ Å, $c = 10.717$ Å, $\alpha = 99.31^{\circ}$, $\beta = 105.64^{\circ}$, $\gamma = 110.71^{\circ}$, and $M(20) = 16.4$ (the figure of merit). Fro the indexed powder pattern the unit cell parameters were refined by a least squares procedure using the program CELLKANT.¹⁵ The values obtained in the refinements were $a = 6.584(2)$ Å, $b = 8.810(2)$ Å, $c = 10.726(3)$ Å, $\alpha = 99.31(2)$ ^o, $\beta = 105.65(2)$ ^o, and $\gamma = 108.65(2)$ ^o using 52 lines of the pattern.

*^a*Conditions: (i) xylene, reflux, **3** h; (ii) neat catechol, sealed tube, **157 OC,** 16 h; (iii) ethanol, reflux, **2** h.

conditions (i) in Scheme I. The insolubility of **1** in organic solvents and the microcrystallinity of this preparation led to its initial characterization by powder diffraction techniques.¹³ The unit cell for this product is identical to that determined subsequently for a product of a lower temperature preparation, which gave crystals suitable for single-crystal X-ray diffraction.'6

Although the π -o-benzoquinone ligands in 1 and 2 are in comparable environments in that they are both π -bound to a $Ru(CO)₂$ fragment and are involved in η^2 -O chelate ring formation to a second as well as bridging to a third ruthenium, there are notable differences in the two structures. **In** the structure of **1,** Figure 1, there is a significant difference in the two quinone C-O bond lengths for the bridging $[C(1)-O(1) = 1.351(3)$ Å] and nonbridging $[C(6)-O(2) = 1.292(3)$ Å] oxygens,¹⁷ while in the structure of **2,** Figure 2,18 the corresponding C-O bond lengths are not significantly different. The ruthenium-carbon bond lengths also indicate that ring slippage in the two structures differ in that in **1** there is a single long Ru-C bond length,

- (14) Visser, J. W. *J. Appl. Crystallogr.* **1969**, 2, 89.
(15) Ersson, N. O. CELLKANT. Program for refinement of cell parameters. University of Uppsala, 1990.
- (16) A sample suitable for single-crystal X-ray diffraction was obtained by treating 30 mg of Ru₃(CO₎₁₂ with a 20-fold excess of catechol in 10 mL
of o -xylene at 127 °C for 46 h. Single-crystal diffraction data for 1:
[C₁₀H₄O₆Ru₂], $M = 422.3$, triclinic group *P1*, $a = 6.585(2)$ Å, non-hydrogen atoms (H's fixed; 179 variables) using 2503 reflections with $F > 6\sigma(F)$, from 3097 unique data collected on a Siemens R3m/V diffractometer by the Wyckoff scan method (4.0 $\leq 2\theta \leq$ 60.0), gave *R* = 0.021 with $\tilde{F} > 6\sigma(F)$, from 3097 unique data collected on a Siemens R3m/V diffractometer by the Wyckoff scan method (4.0 $\leq 2\theta \leq 60.0$), gave R
- (17) For comparison the carbon-oxygen bond lengths in the η ³-containing semibenzoquinone complex $Pd_2(Pd(\eta^2-\eta^3-(DBSQ))$ (DBSQ = 3,5-terr-butyl-1,2-benzosemiquinone) are 1.280(17) and 1.354(17) **A**.¹

Figure 1. Molecular structure of **I.** Selected bond lengths **(A):** Ru(2)- 2.402(3); C(1)-O(1) = 1.351(3); C(6)-O(2a) = 1.292(3); Ru(1)-O(1) $= 2.192(2)$; Ru(1)-O(2) = 2.097(2); Ru(1)-O(1a) = 2.206(2); $Ru(1)-Ru(2) = 2.775(1)$. Hydrogen atoms not shown. $C(1) = 2.319(3)$; Ru(2)-C(2) = 2.313(4); Ru(2)-C(3) = 2.302(4); $Ru(2)-C(4) = 2.300(3); Ru(2)-C(5) = 2.325(3); Ru(2)...C(6) =$

Figure 2. Molecular structure of **2.** Selected bond lengths **(A):** $Ru(2) \cdots C(1) = 2.396(6); Ru(2) - C(2) = 2.271(7); Ru(2) - C(3) =$ 2.249(7); $Ru(2)-C(4) = 2.247(7)$; $Ru(2)-C(5) = 2.311(6)$; $Ru(2) \cdots C(6) = 2.420(6); C(1) - O(1) = 1.306(6); C(6) - O(2) =$ 1.316(6); Ru(1)-O(1) = 2.105(4); Ru(1)-O(2) = 2.121(3); Ru(1)-O(2a) $=2.295(4); Ru(1)-Ru(3) = 2.830(1); Ru(2)-Ru(3) = 2.881(1).$ Catechol solvate and hydrogen atoms not **shown.**

 $[\text{Ru}(2)\cdots\text{C}(6) = 2.402(3) \text{ Å}]$,¹⁹ while in 2 the metal has shifted toward the 1,3-diene moiety of the benzoquinone. In addition, while the benzoquinone ligand in 2 is planar,²⁰ the nonbridging oxygenin **1 isbent0.14Aoutoftheplanedefined** bytheremainder of the benzosemiquinone ligand. These structural trends suggest that 1 is best described as a η^5 - o -benzoquinone complex. The profound insolubility of **1,** which precipitates from xylene at reflux, can be attributed to the close intermolecular π -stacking; the eclipsed six membered rings of the stacked η^5 -benzosemiquinone ligands have an average intermolecular carbon-carbon distance of 3.596 **A.21** This distance is at the lower end of the range 3.61-3.87 Å found for n^2 -chelate quinone structures in the Cambridge Structural Database (version 5) which have π -stacked

- (18) Crystal data for 2 (from catechol melt): $C_{17}H_4O_{10}Ru_3$, $M = 671.42$, monoclinic space group P_{21}/n , $a = 8.869(1)$ A, $b = 9.804(2)$ A, $c = 23.437(5)$ A, $\beta = 92.400(10)$ °, $V = 2036.0(6)$ λ^3 , $Z = 4$, $D_c = 2.248$ $g~cm^{-3}$, $\mu(Mo~K\alpha) = 2.213$ mm⁻¹, $F(000) = 1312$, $T = 296$ K. The compound crystallizes with half a catechol per triruthenium unit. The catechol molecule is disordered between two orientations related by a 60° rotation of the plane of the molecule which refine to occupancy factors of 32.9 and 17.%. Final anisotropic refinement for all nonhydrogen atoms (H's fixed; 342 variables) using 3153 reflections with $F > 6\sigma(F)$, from 4699 unique data collected by the $2\theta - \theta$ scan method $(4.0 \le 2\theta \le 55.0)$, gave $R = 0.032$ and $R_w = 0.048$.
- (1 9) The rangeof rutheniurn-carbon bond lengths for (\$-arene)Rucomplexes in the Cambridge Structural Database (version *5)* is 2.16-2.29 A.
- (20) For comparison, the largest out of plane deviations in complexes with η^4 -o-benzoquinone ligands are 0.019 Å by the nonbridging oxygen O(1) (d) Bhattacharya, in 2, and 0.040 Å by C(6) in $\left[\text{Ru}_{2}(\eta^4,\mu_{2},\eta^2-\text{$
- (21) Note that similar π -stacking interactions are not found in any of the other π -bound o -quinone structures.²

tetrachloro-o- and phenanthroquinones.^{5a,22} The stabilization offered by π -stacking may account for some of the uniqueness of 1; efforts to prepare substituted analogues of **1** which contain sterically hindered halo- and alkyl-substituted catechols have been unsuccessful.23 The diffuse reflectance electronic spectrum for 1 has an intense band at 404.6 nm and a weaker band at 690 nm. Although the high energy band is common to all the complexes $1-3$,²⁴ the weak lower energy transition is unique to 1, and is most likely associated with an intermolecular charge transfer transi $tion^{.25}$

Lewis bases readily add to 1 or **2 to** give products which depend markedly upon the base employed. The π -bound Ru(CO)₂ fragments in 1 and **2** are cleaved upon treatment with excess triphenylphosphine togive **4a** in modest yield. On theother hand, treatment of 1 and 2 with less basic donors such as triphenylarsine results in markedly different behavior to give either the mononuclear η^2 -chelate **4b** from **2** or the tetranuclear π -complex **3** from $1²$. The addition of triphenylarsine to 1 cleaves the bridging oxygens *on/y* and coordinates the new ligand *trans* to the metalmetal bond in the opened cyclic structure found in 3.

Electrochemical characterization of **2** and 3 by cyclic voltammetry illustrates the strong perturbation that the π -binding of the quinone has on the redox potential for this ensemble. While the η^2 -O bound catecholate in **4a** has a reversible couple at -354 $mV₁²⁶$ which is assigned to a ligand-based oxidation [Ru^{II}- $(cat²^-)/Ru^H(sba¹^-)],²⁷$ the π -*o*-benzoquinone complex 2 undergoes an irreversible oxidation at 585 mV. Future work will attempt to resolve the question of the degree to which the metal-quinone separation and the strength of the π -binding perturbs quinone redox potential and, concomitantly, how the metalloquinone ensemble functions as a two-electron oxidation catalyst in the metalloquinoproteins.^{11b}

Acknowledgment. We would like to gratefully acknowledge financial support from the donors of the Petroleum Research Fund (Grant 25 141-63), administered by the American Chemical Society, and the assistance of Dr. Susan Swapp of the University of Wyoming Geology Department in acquiring preliminary X-ray powder diffraction results.

Supplementary Material Available: Tables giving summaries of the X-ray crystallographic results for **1** and **2,** positional and thermal parameters, and bond distances and angles (10 pages). Ordering information is given on any current masthead page.

- (24) Solution phase UV-vis data for related complexes $(\lambda_{max} (\log \epsilon), nm)$ in dichloromethane at 25 °C: 2, 446 sh (3.9); 3, 438 sh (4.1), 467 (4.1); **49. 482 (3.3).** *-7* -- \- *-I*
- Self-donor-acceptor complexes such as **1** have been reviewed: McGlynn, **S.** P. *Chem. Rev.* **1958.58,** 11 13.
- Electrochemical measurements were performed in dry oxygen-free dichloromethane with a 0.1 **M tetrakis(n-buty1)ammonium** hexafluorophosphate electrolyte, a platinum working electrode, and Ag/AgCI reference electrode. The potentials are given relative to an internal
- ferroccne/ferroccnium couple. For related electrochemical results see: (a) Connelly, N. G,; Manners, I.; Protheroe, J. R. C.; Whiteley, M. W. *J. Chem. Sa., Dolron Truns.* **1984,** 2713. (b) Balch, A. L. *J. Am. Chem. SOC.* **1973,** 95,2723. (c) Girgis, A. L.; Sohn, Y. **S.;** Balch, A. L. *Inorg. Chem.* **1975,** *14,* 2327. (d) Bhattacharya, **S.;** Pierpont, C. G. *Inorg. Chem.* **1991.** *31,* 35. (e) Haga, M.; **Isobe,** K.; Bmne, **S.** R.; Pierpont, C. G. Inorg. *Chem.* **1990,** 29,3795. (e) Haga, M.; Dodsworth, E. **S.;** Lever, A. B. P. *Inorg. Chem.* **1986,** *25,* 447.

⁽²²⁾ For example the quinone length in $[Pt(dmso)_2(n^2-O_2C_6Cl_4)]^2$ and $[Pd-$ **(phcnanthr~quinone)(9,1O-dimethylphenanthrene)]~** form eclipsed stacked dimers with an average intermolecular carbon-carbon distance of 3.70 and 3.71 **A** respectively. (a) Khodashova, T. **S.;** Porai-Koshits, **M.** A.; Rudii, R. I.; Cherkashima, N. V.; Moiseev, I. I. *Koord. Khim. 1984,10,* 850. (b) Yanovskii, A. **1.;** Zagorodnikov, V. P.; Struchkov, **Yu.** T. *Koord. Khim.* **1986,** 12, 336.

⁽²³⁾ The reaction of $Ru_3(CO)_{12}$ with either 2,3,4,5-tetrachlorocatechol or 4-methylcatechol under the conditions (i) in Scheme I does not result in a microcrystalline precipitate similar to **1.**