Structural and Reactivity Patterns in π -Complexes of o-Benzoquinone

D. Scott Bohle,^{*,†} A. Nørlund Christensen,[‡] and Patricia A. Goodson[†]

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071-3838, and Chemistry Department, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

Received May 18, 1993

The recent isolation of π -complexes containing η^3 -semi-obenzoquinone,¹ η^4 -o-benzoquinone,² and η^6 -catecholate³ fragments augments the extensive π -coordination chemistry of η^4 p-benzoquinones.⁴ Although our structural understanding of π -bound metalloquinones is now well developed, information concerning the reactivity and electronic structures of π -bound oand p-quinones is limited.⁵ The recognition of metalloquinone π -interactions in the copper containing metalloquinoid proteins⁶ galactose oxidase⁷ and the amine oxidases,⁸ which contain tyrosyl-(4-thioether)⁹ and topaquinone¹⁰ residues, respectively, suggest that the metal-quinoid cofactor π -interaction may be rather common^{6a} and critical to enzymatic turnover.¹¹ When contrasted with the detailed understanding of the electronic structure of the η^3 -O-chelate bound quinoids, ^{5a,12} there is a conspicuous lack of experimental and theoretical data for the π -bound complexes. This paper concerns one end of the scale of possible metalloquinone π -interactions, that characterized by strong back-bonding to the quinone and relatively short metal-carbon bonds.

Depending upon the specific conditions employed, Scheme I, the oxidative addition of catechol to triruthenium dodecacarbonyl yields either { $Ru_2(\eta^2,\mu_2,\eta^n-O_2C_6H_4)(CO)_4$ } (1), which precipitates in high yield as an air-stable pale yellow microcrystalline insoluble diamagnetic solid, or the dimeric edge opened complex {Ru₃- $(\eta^2, \mu_2, \eta^n - O_2 C_6 H_4)(CO)_8$ (2). It is possible to convert 2 in high yield to 1 by treating it with additional catechol under the

[†] University of Wyoming.

- [‡] Aarhus University.
- (1) (a) Fox, G. A.; Pierpont, C. G. Inorg. Chem. 1992, 31, 3718. (b) Fox, G. A.; Pierpont, C. G. J. Chem. Soc., Chem. Commun. 1988, 806.
- (2) Bohle, D. S.; Goodson, P. A. J. Chem. Soc., Chem. Commun. 1992, 1205
- (3) Westcott, S. A.; Taylor, N. J.; Marder, T. B.; Baker, R. T.; Jones, N. J.; Calabrese, J. C. J. Chem. Soc., Chem. Commun. 1991, 304.
- (4) Schrauzer, G. N. Adv. Organomet. Chem. 1964, 2, 1.
- (5) (a) Pierpoint, C. G.; Buchanan, R. M. Coord. Chem. Rev. 1981, 38, 45. (b) Kabachnik, M. I.; Bubnov, N. N.; Solodovikov, S. P.; Prokof'ev, A. I. Russ. Chem. Rev. (Engl. Trans.) 1984, 53, 288.
- (6) For reviews of quinoidproteins see: (a) Duine, J. A. Eur. J. Biochem. 1991, 200, 271. (b) Jonegejan, J. A.; Duine, J. A. Eds. PQQ and Quinoproteins; Kluwer: Hinghan, MA, 1989. (c) Thompson, A. J. Nature 1991, 350, 22.
- (7) Ito, N.; Phillips, S. E. V.; Stevens, C.; Ogel, Z. B.; McPherson, M. J.; Keen, J. N.; Yadav, D. S.; Knowles, P. F. Nature 1991, 350, 87.
- (8) Dooley, D. M.; McGuirl, M. A.; Brown, D. E.; Turowski, P. N.; McIntire, W. S.; Knowles, P. F. Nature 1991, 349, 262.
- (9) Derived from the covalent linkage of the cysteinyl sulfur in cys 228 to the four position of the phenyl ring in tyr 272.
- (10) Topaquinone = 3-(2,4,5-trihydroxyphenyl)alanine, see: James, S. M.; Mu, D.; Wemmer, D.; Smith, A. J.; Kaur, S.; Maltby, D.; Burlingame,
- Masui, H.; Lever, A. B. P.; Auburn, P. R. *Inorg. Chem.* 1991, 30, 2402. (13) Crystal data for 1: The X-ray powder pattern of $[Ru_2(O_2C_{H_1})(CO)_4]$
- was recorded on a Nonius Guinier camera at 25 °C with Si (a = 5.43050Å) as an internal standard and Cu K α_1 radiation ($\lambda = 1.540598$ Å). The position of the diffraction lines were measured on a photometer, and the powder pattern was indexed using the program FZON,¹⁴ with a triclinic cell a = 6.584 Å, b = 8.809 Å, c = 10.717 Å, $\alpha = 99.31^{\circ}$, β = 105.64°, γ = 110.71°, and M(20) = 16.4 (the figure of merit). From the indexed powder pattern the unit cell parameters were refined by a least squares procedure using the program CELLKANT.¹⁵ The values obtained in the refinements were a = 6.584(2) Å, b = 8.810(2) Å, c =10.726(3) Å, $\alpha = 99.31(2)^\circ$, $\beta = 105.65(2)^\circ$, and $\gamma = 108.65(2)^\circ$ using 52 lines of the pattern.

^a Conditions: (i) xylene, reflux, 3 h; (ii) neat catechol, sealed tube, 157 °C, 16 h; (iii) ethanol, reflux, 2 h.

conditions (i) in Scheme I. The insolubility of 1 in organic solvents and the microcrystallinity of this preparation led to its initial characterization by powder diffraction techniques.¹³ The unit cell for this product is identical to that determined subsequently for a product of a lower temperature preparation, which gave crystals suitable for single-crystal X-ray diffraction.¹⁶

Although the π -o-benzoquinone ligands in 1 and 2 are in comparable environments in that they are both π -bound to a $Ru(CO)_2$ fragment and are involved in η^2 -O chelate ring formation to a second as well as bridging to a third ruthenium, there are notable differences in the two structures. In the structure of 1, Figure 1, there is a significant difference in the two quinone C-O bond lengths for the bridging [C(1)-O(1) = 1.351(3) Å] and nonbridging [C(6)-O(2) = 1.292(3) Å] oxygens,¹⁷ while in the structure of 2, Figure 2,18 the corresponding C-O bond lengths are not significantly different. The ruthenium-carbon bond lengths also indicate that ring slippage in the two structures differ in that in 1 there is a single long Ru-C bond length,

(14)

- Visser, J. W. J. Appl. Crystallogr. 1969, 2, 89. Ersson, N. O. CELLKANT. Program for refinement of cell parameters. (15)University of Uppsala, 1990.
- (16) A sample suitable for single-crystal X-ray diffraction was obtained by A sample suitable for single-crystal X-ray diffraction was obtained by treating 30 mg of Ru₃(CO)₁₂ with a 20-fold excess of catechol in 10 mL of o-xylene at 127 °C for 46 h. Single-crystal diffraction data for 1: [C₁₀H₄O₆Ru₂]₂, M = 422.3, triclinic group P1, a = 6.885(2) Å, b =8.813(2) Å, c = 10.416(2) Å, $\alpha = 99.31(3)^{\circ}$, $\beta = 105.65(3)^{\circ}$, $\gamma =$ 108.92(3)°, V = 529.7(2) Å³, Z = 1, $D_c = 2.648$ g cm⁻³, μ (Mo K α) = 2.867 mm⁻¹, F(000) = 400, T = 295 K. Anisotropic refinement for all non-hydrogen atoms (H's fixed; 179 variables) using 2503 reflections with $F > 6\sigma(F)$, from 3097 unique data collected on a Siemens R3m/V diffractometer by the Wyckoff scan method ($4.0 \le 2\theta \le 60.0$), gave R = 0.021 and R_w = 0.029.
- (17) For comparison the carbon-oxygen bond lengths in the η³-containing semibenzoquinone complex Pd₂{Pd(η²-η³-(DBSQ)} (DBSQ = 3,5-tert-butyl-1,2-benzosemiquinone) are 1.280(17) and 1.354(17) Å.¹

Figure 1. Molecular structure of 1. Selected bond lengths (Å): Ru(2)-C(1) = 2.319(3); Ru(2)-C(2) = 2.313(4); Ru(2)-C(3) = 2.302(4); Ru(2)-C(4) = 2.300(3); Ru(2)-C(5) = 2.325(3); $Ru(2)\cdots C(6) = 2.402(3)$; C(1)-O(1) = 1.351(3); C(6)-O(2a) = 1.292(3); Ru(1)-O(1) = 2.192(2); Ru(1)-O(2) = 2.097(2); Ru(1)-O(1a) = 2.206(2); Ru(1)-Ru(2) = 2.775(1). Hydrogen atoms not shown.

Figure 2. Molecular structure of 2. Selected bond lengths (Å): $Ru(2)\cdots C(1) = 2.396(6); Ru(2)-C(2) = 2.271(7); Ru(2)-C(3) =$ 2.249(7); Ru(2)-C(4) = 2.247(7); Ru(2)-C(5) = 2.311(6); $Ru(2)\cdots C(6) = 2.420(6); C(1)-O(1) = 1.306(6); C(6)-O(2) =$ 1.316(6); Ru(1)-O(1) = 2.105(4); Ru(1)-O(2) = 2.121(3); Ru(1)-O(2a)= 2.295(4); Ru(1)-Ru(3) = 2.830(1); Ru(2)-Ru(3) = 2.881(1). Catechol solvate and hydrogen atoms not shown.

[Ru(2)---C(6) = 2.402(3) Å],¹⁹ while in 2 the metal has shifted toward the 1,3-diene moiety of the benzoquinone. In addition, while the benzoquinone ligand in 2 is planar,²⁰ the nonbridging oxygen in 1 is bent 0.14 Å out of the plane defined by the remainder of the benzosemiquinone ligand. These structural trends suggest that 1 is best described as a η^5 -o-benzoquinone complex. The profound insolubility of 1, which precipitates from xylene at reflux, can be attributed to the close intermolecular π -stacking; the eclipsed six membered rings of the stacked η^5 -benzosemiquinone ligands have an average intermolecular carbon-carbon distance of 3.596 Å.²¹ This distance is at the lower end of the range 3.61-3.87 Å found for η^2 -chelate quinone structures in the Cambridge Structural Database (version 5) which have π -stacked

- (18) Crystal data for 2 (from catechol melt): $C_{17}H_4O_{10}Ru_3$, M = 671.42, monoclinic space group $P2_1/n$, a = 8.869(1) Å, b = 9.804(2) Å, c = 23.437(5) Å, $\beta = 92.400(10)^\circ$, V = 2036.0(6) Å³, Z = 4, $D_c = 2.248$ g cm⁻³, μ (Mo K α) = 2.213 mm⁻¹, F(000) = 1312, T = 296 K. The compound crystallizes with half a catechol per triruthenium unit. The catechol molecule is disordered between two orientations related by a 60° rotation of the plane of the molecule which refine to occupancy factors of 32.9 and 17.%. Final anisotropic refinement for all non-hydrogen atoms (H's fixed; 342 variables) using 3153 reflections with $F > 6\sigma(F)$, from 4699 unique data collected by the 2θ - θ scan method ($4.0 \le 2\theta \le 55.0$), gave R = 0.032 and $R_w = 0.048$.
- (19) The range of ruthenium-carbon bond lengths for $(\eta^{6}$ -arene)Ru complexes in the Cambridge Structural Database (version 5) is 2.16-2.29 Å.
- (20) For comparison, the largest out of plane deviations in complexes with η^4 -o-benzoquinone ligands are 0.019 Å by the nonbridging oxygen O(1) in 2, and 0.040 Å by C(6) in [Ru₂(η^4,μ_2,η^2 -o-C₆H₄O₂)(CO)₄(μ_2 -I)I]²
- (21) Note that similar π -stacking interactions are not found in any of the other π -bound o-quinone structures.²

tetrachloro-o- and phenanthroquinones.^{5a,22} The stabilization offered by π -stacking may account for some of the uniqueness of 1; efforts to prepare substituted analogues of 1 which contain sterically hindered halo- and alkyl-substituted catechols have been unsuccessful.²³ The diffuse reflectance electronic spectrum for 1 has an intense band at 404.6 nm and a weaker band at 690 nm. Although the high energy band is common to all the complexes 1-3,²⁴ the weak lower energy transition is unique to 1, and is most likely associated with an intermolecular charge transfer transition.²⁵

Lewis bases readily add to 1 or 2 to give products which depend markedly upon the base employed. The π -bound Ru(CO)₂ fragments in 1 and 2 are cleaved upon treatment with excess triphenylphosphine to give 4a in modest yield. On the other hand, treatment of 1 and 2 with less basic donors such as triphenylarsine results in markedly different behavior to give either the mononuclear η^2 -chelate 4b from 2 or the tetranuclear π -complex 3 from 1.² The addition of triphenylarsine to 1 cleaves the bridging oxygens only and coordinates the new ligand *trans* to the metalmetal bond in the opened cyclic structure found in 3.

Electrochemical characterization of 2 and 3 by cyclic voltammetry illustrates the strong perturbation that the π -binding of the quinone has on the redox potential for this ensemble. While the η^{2} -O bound catecholate in 4a has a reversible couple at -354 mV,²⁶ which is assigned to a ligand-based oxidation [Ru¹¹-(cat²⁻)/Ru¹¹(sbq¹⁻)],²⁷ the π -o-benzoquinone complex 2 undergoes an irreversible oxidation at 585 mV. Future work will attempt to resolve the question of the degree to which the metal-quinone separation and the strength of the π -binding perturbs quinone redox potential and, concomitantly, how the metalloquinone ensemble functions as a two-electron oxidation catalyst in the metalloquinoproteins.^{11b}

Acknowledgment. We would like to gratefully acknowledge financial support from the donors of the Petroleum Research Fund (Grant 25141-63), administered by the American Chemical Society, and the assistance of Dr. Susan Swapp of the University of Wyoming Geology Department in acquiring preliminary X-ray powder diffraction results.

Supplementary Material Available: Tables giving summaries of the X-ray crystallographic results for 1 and 2, positional and thermal parameters, and bond distances and angles (10 pages). Ordering information is given on any current masthead page.

- (24) Solution phase UV-vis data for related complexes (λ_{max} (log ε), nm) in dichloromethane at 25 °C: 2, 446 sh (3.9); 3, 438 sh (4.1), 467 (4.1); 4a, 482 (3.3).
- (25) Self-donor-acceptor complexes such as 1 have been reviewed: McGlynn, S. P. Chem. Rev. 1958, 58, 1113.
- (26) Electrochemical measurements were performed in dry oxygen-free dichloromethane with a 0.1 M tetrakis(n-butyl)ammonium hexafluorophosphate electrolyte, a platinum working electrode, and Ag/AgCl reference electrode. The potentials are given relative to an internal ferrocene/ferrocenium couple.
- ferrocene/ferrocenium couple.
 (27) For related electrochemical results see: (a) Connelly, N. G.; Manners, I.; Protheroe, J. R. C.; Whiteley, M. W. J. Chem. Soc., Dalton Trans. 1984, 2713. (b) Balch, A. L. J. Am. Chem. Soc. 1975, 95, 2723. (c) Girgis, A. L.; Sohn, Y. S.; Balch, A. L. Inorg. Chem. 1975, 14, 2327. (d) Bhattacharya, S.; Pierpont, C. G. Inorg. Chem. 1991, 31, 35. (e) Haga, M.; Isobe, K.; Boone, S. R.; Pierpont, C. G. Inorg. Chem. 1990, 29, 3795. (e) Haga, M.; Dodsworth, E. S.; Lever, A. B. P. Inorg. Chem. 1986, 25, 447.

⁽²²⁾ For example the quinone length in [Pt(dmso)₂(η²-O₂C₆Cl₄)]^{*} and [Pd-(phenanthroquinone)(9,10-dimethylphenanthrene)]^b form eclipsed stacked dimers with an average intermolecular carbon-carbon distance of 3.70 and 3.71 Å respectively. (a) Khodashova, T. S.; Porai-Koshits, M. A.; Rudii, R. I.; Cherkashima, N. V.; Moiseev, I. I. Koord. Khim. 1984, 10, 850. (b) Yanovskii, A. I.; Zagorodnikov, V. P.; Struchkov, Yu. T. Koord. Khim. 1986, 12, 336.

⁽²³⁾ The reaction of Ru₃(CO)₁₂ with either 2,3,4,5-tetrachlorocatechol or 4-methylcatechol under the conditions (i) in Scheme I does not result in a microcrystalline precipitate similar to 1.